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Resonant interactions between triads of internal gravity waves propagating in a 
shear flow are considered for the case when the stratification and the background 
shear flow vary slowly with respect to typical wavelengths. If w,, ~ , ( n  = 1 , 2 , 3 )  are 
the local frequencies and wavenumbers respectively then the resonance conditions 
are that w , + w , + o ,  = 0 and K~ + K ~ + K ,  = 0. If the medium is only weakly 
inhomogeneous, then there is a strong resonance and to leading order the resonance 
conditions are satisfied globally. The equations governing the wave amplitudes are 
then well known, and have been extensively discussed in the literature. However, if 
the medium is strongly inhomogeneous, then there is a weak resonance and the 
resonance conditions can only be satisfied locally on certain space-time resonance 
surfaces. The equations governing the wave amplitudes in this case are derived, and 
discussed briefly. Then the results are applied to a study of the hierarchy of wave 
interactions which can occur near a critical level, with the aim of determining to what 
extent a critical layer can reflect wave energy. 

1. Introduction 
Resonant interactions between wave triads have been extensively studied over the 

last twenty years particularly in the areas of nonlinear optics, plasma physics and 
fluid dynamics. See, for instance, the texts by Bloembergen (1965)) Davidson (1972), 
Weiland & Wilhelmsson (1977) and Craik (1986). For the most part, attention has 
focused on the case when the resonance conditions are met globally. In  the case when 
the interacting waves are infinite periodic wavetrains the interaction equations can be 
integrated in terms of elliptic functions, and the nature of the interaction is well 
understood. If, instead, the interacting waves are wave packets, the interaction 
equations can be solved by the inverse scattering transform algorithm and many 
interesting solutions have been found (see, for instance, Zakharov & Manakov 1975 ; 
Bers, Kaup & Reiman 1976 ; Craik 1978 ; Kaup, Reiman & Bers 1979). 

In  this paper we explore a situation when the resonance conditions can only be met 
locally on certain space-time surfaces. The context is the interaction between 
internal gravity waves propagating in a stratified shear flow, for the case when the 
stratification and background shear flow vary slowly on lengthscales and timescales 
associated with the waves. Resonant interactions between internal gravity waves in 
the absence of any background shear flow have been studied by Ball (1964) for a two- 
layer fluid and Thorpe (1966) for continuous stratification. Resonant interactions 
between interfacial waves in layered fluids have been discussed by Cairns (1979), 
Craik & Adams (1979) and Tsutahara (1984, 1986). They showed that explosive 
interactions were possible when there were appropriate velocity jumps between the 
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layers. The essential difference between these studies, and the case discussed here, is 
that in all these studies the resonance conditions are met globally, whereas here the 
resonance conditions are only satisfied on certain space-time surfaces. 

One of the main motivations for our study is the series of papers by Brown & 
Stewartson (1980, 1982a, 6) on the nonlinear processes affecting internal gravity 
waves near a critical level. They showed that wave reflection and transmission a t  a 
critical level was essentially determined by a hierarchy of wave interactions, 
although their study differs in a significant way from that described here in that 
higher harmonics of the main incoming wave play a crucial role in initiating the 
interaction process. In  contrast, here only the first harmonics of the waves (i.e. that 
part which satisfies the linearized equations of motion) participate in the interaction. 
This aspect of our study will be developed further in $5.  In $ 2  the derivation of the 
interaction equations is described, and in $3 we present a general analysis of these 
equations. Then in 94 we describe in detail the special case of wave interactions near 
a critical level. 

2. Derivation of the interaction equations 
Let the basic flow consist of the horizontal shear flow uo(z) = (uo(z),wo(z),O) and 

density field po(z). Here z is the vertical coordinate. Throughout we shall use non- 
dimensional variables based on a lengthscale h, (a typical wavelength), a timescale 
N;' (where N ,  is a typical value of the Brunt-Vaisala frequency) and a pressure scale 
p,gh ,  (where p1 is a typical value of the density). The density gradient is given by 

dP0 
~ dz = -PpoN2,  

where N ( z )  is the non-dimensional Brunt-Vaisala frequency and p = hIN,2g-l, which 
is small in the Boussinesq approximation. Relative to  this basic flow we define the 
particle displacement <(x, t )  so that the Eulerian coordinate 2 of a fluid particle is 

2 = x+<. ( 2 . 2 )  

Here x is a Lagrangian coordinate convected with the basic flow. The Lagrangian 
equations of motion in the present context have been described by Grimshaw (1981). 
First, in a non-diffusive incompressible fluid the density is a material property and 
is again given by po(z).  Next the Jacobian of the transformation from x to .i? is 
constant, and equal to one. It follows that 

v .<+I = 0, ( 2 . 3 ~ )  

where I = iV.{<(V.<)-(<.V)<}+det - . [ 3 (2.36) 

If p is the pressure, we define a pressure perturbation q(x, t )  by 

P = P o ( 4  - P o ( 4  5+P9, (2.4) 
where p o ( z )  is the basic pressure field, and 6 is the vertical particle displacement. Then 
the momentum equation is 

(2.5a) 
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where M = p o - . -  d29 a< 
dt2 ax' 

and 
d a  
- = -+uo.v. at at 

(2.5b) 

( 2 . 5 C )  

Here D is a term representing dissipative effects. Eliminating q and cH (the 
horizontal part of 5 )  from the linear parts of equations (2.3a) and (2.5a) we find 
that 

where 

(2.6a) 

(2.66) 

and D = V&D,-V,--. ( 2 . 6 ~ )  

Here the subscripts ' H '  and ' V '  denote horizontal and vertical components 
respectively. In (2 .6a)  M contains all the nonlinear terms, and D contains all the 
dissipative terms. 

Next we assume that the basic flow varies slowly with respect to the lengthscales 
and timescales associated with the wave field. Hence we introduce the slow 

aZ 

(2.7) 
variables 

X =  ex, T = et, 

where e is a small parameter. The basic flow is assumed to be a function of Z = €2,  

so that uo = uo(Z)  and po = po(Z). Consistent with these hypotheses we assume that 
the Boussinesq parameter /3 is O ( E ) ,  and we put /3 = ue. Then (2.1) becomes 

We shall also assume that the dissipative terms are O(e) and replace D with cD. Next 
we write (2 .6a)  in the form 

(2.9) 

Here L ( p o , p ; z ; e )  is a linear operator defined by 

L = L0+€Ll,  (2.10a) 

and (2.10c) 

Here p ,  = p -  k is the vertical component of p .  We shall now seek an asymptotic 
solution which describes a set of interacting modulated waves. Thus we put 

(2.11a) 

where (2.11b) 
1 

8, = - O , ( X , T ) .  
F 
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Each wave is described by a slowly varying amplitude A ,  and a rapidly varying 
phase 8,. For each wave the local frequency w,, and the local wavenumber, u,, are 
defined .by 

K, = vo,. ao w =-L 
a T ’  

(2.12) 

The required balance between slow modulations and nonlinearity which determines 
the relation between E and a will be considered below. 

As a preliminary to obtaining the solution we define the dispersion operator 

9 ( w , u ; Z )  = Lo(-iw,iu;Z), (2.13 a )  

or 9 / I o { d 2 K z  - N Z K & } ,  (2.13 6) 

where 4 = w - u o ’ K H ,  K = 1x1, KH = IKHI. ( 2 . 1 3 ~ )  

Here (2.13b) follows from (2.106). Substituting ( 2 . 1 1 ~ )  into (2.9), we find that, a t  
leading order, 

9(wr , fC;Z)  = 0. (2.14) 

Thus, not unexpectedly, each wave satisfies the well-known dispersion relation for 
internal gravity waves. At the next order we obtain 

+M,+O(e2a , sa2 ,a3 )  =  ED^. (2.15) 

Here M ,  is the ‘a2’ term in the nonlinear expression M ,  and D, is the ‘a’ term in the 
dissipative expression D. The balance between modulation and nonlinearity requires 
that E = O(a).  Also, in the second term i3L,/i3po and aL0/i3p are evaluated a t  p, = 
-iw,,p = i q .  To avoid secularities it is clear that cannot contain any terms 
whose phase is Or,  since L, is then a null operator. It follows that, to leading 
order, 

Here we have used ( 2 . 1 0 ~ )  and (2.13a), and the superscript ‘ r ’  in M, and D, denotes 
those terms whose phase is approximately 8,. Finally using (2.14) we find that (2.16) 
becomes 

where (2.17 6) 

Here V,  is the group velocity, and in the absence of the nonlinear and dissipative 
terms, equation ( 2 . 1 7 ~ )  describes conservation of wave action (see, for instance, 
Grimshaw 1974). We note that 

(2.18) 
a 9  

d, = --A,/’ = 2p,d,~: IA,I2 
awr 
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is the wave action density in the present context. Note that in the absence of the 
nonlinear and dissipative terms, the conserved quantity in (2.17 a )  is the complex 
wave action density d, exp (2i arg A,) ,  and consequently both d, and arg (A,) satisfy 
conservation equations. For the case when the dissipative term is due to molecular 
viscosity we find that (see Grimshaw 1974) 

(2 .19)  

where u is the kinematic viscosity. 
We now turn to an examination of the nonlinear term in (2 .17a) .  From the 

discussion above we see that this term contributes only in the vicinity of a resonance, 
where a pair of waves, with phases 8, and O,, satisfy a resonance condition. This is 
defined as follows. Let 

8, + 0, + 8, = - x(X, T ), (2 .20a)  
1 
€ 

so that ax 
W,+W,fW, = -- 

aT ' 
(2.20 b )  

and I C p + K p + I C ,  = VX. (2.20c) 

Then a resonance occurs when aX/aT and V x  vanish simultaneously. In  general, these 
conditions can only be met on isolated manifolds in (X, Tj-space. The contribution 
of the p -  and q-waves to the nonlinear term in (2 .17a)  can now be evaluated from 
(2 .36 ) ,  (2 .56)  and (2 .66) .  Omitting details we find that 

M r )  exp ( - iO,) = - ia2yA: Ax exp ( - iX/E), (2.21 a )  

where y = P o m , ( j , 2 ( 1 1 , . K , ) ( t l p ' K , ) +  ...+ ..., (2.21 b )  

and 

The omitted terms in (2.21 b) are obtained by cyclic interchange of the indices p ,  q, 
r in the displayed term. We note that {A,q,  exp (id,) + *} is the particle displacement 
for the r-wave. In  evaluating the coefficient y we use the fact that the nonlinear term 
( 2 . 2 1 ~ )  is only significant near resonance and hence we can use the resonance 
conditions (i.e. (2.20a-c) with the right-hand side replaced by zero). The result that 
y is then real-valued and independent of the ordering of the indices p , q , r  is a 
consequence of the fact that the non-dissipative part (i.e. the left-hand sides) of 
equations ( 2 . 3 ~ )  and (2 .5a)  can be derived from a Lagrangian (cf. Hasselman 1966). 
Combining (2.17a), (2.18) and (2 .21a)  we obtain the interaction equations in the 
form. 

(2.21c) 11, = k-m,?, ICHr m, = ~ , . k .  
K H r  

There are two similar equations for the p -  and q-waves which are obtained by a cyclic 
rotation of the indices p , q , r .  Further discussion of these equations together with 
determination of the possible ordering relationships between the parameters a and E 

will be taken up in the next section. 
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3. Analysis of the interaction equations 
In the analysis of the interaction equations (2.22) two main cases can be 

distinguished, depending on whether the resonance conditions can be satisfied 
globally, or locally. We shall call these two cases (i) and (ii) respectively. 

(i) Weak inhomogeneity, or strong resonance. In  this case the inhomogeneous terms 
in the dispersion relation (2.14) are O(e) (i.e. N 2  and uo are constant to O ( e ) ) ,  with the 
consequence that w, and K ,  are constants to O(e). We may write 

w, = w p )  + €@?( X ,  T ) , K ,  = K:') + eKjl) ( X ,  T ) , (3.1) 

where w p )  and K:O) are constants, and satisfy the resonance conditions, 

w(O) P + 0;) + @i0) = 0, K:') + K;)  + K;) = 0. (3.2a, b )  

Thus the resonance conditions are met, to O(E), over the whole ( X ,  T)-space. We may 
then put x = ef) (see (2.20a-c)), and the interaction equations (2.22) become 

Clearly the balance between nonlinearity and modulation requires that 01 = e. Here 
the superscript '0' indicates quantities evaluated at the lowest order from the 
expansions (3.1), and such quantities are clearly constants. fl) represents an 
inhomogeneous detuning term. When x(l) is a constant, which may be equated with 
zero without loss of generality, and the dissipative term is absent (i.e. v = 0), then it 
is well known that the interaction equations (3.3) can be solved exactly by the 
inverse-scattering technique, with a host of interesting exact solutions (see, for 
instance, Zakharov & Manakov (1975), Bers et al. (1976), Craik (1978) and Kaup 
et al. 1979). When x(l) is a t  most a quadratic in Xand T, then Reiman, Bers & Kaup 
(1977) and Reiman (1979) have shown that, in general, there exist transformations 
involving the phase of A,, which reduce (3.3) to the case when x(l) is zero. We shall 
not discuss this case any further here as the solutions are well documented in the 
literature, and it is not the situation we wish to discuss in this paper. 

(ii) Strong inhomogeneity, or weak resonance. I n  this case the inhomogeneous terms 
in the dispersion relation (2.14) are O(1) (i.e. N 2  and uo are non-trivial functions of Z),  
with the consequence that w,  and K ,  are non-trivial functions of X and T. The 
resonance conditions are 

w P + w q + W ,  = 0, K P + K q + K ,  = 0, (3.4~2, b )  

which define a manifold in (X, T )-space. Here we shall consider only the case of most 
interest to us when this manifold is a surface, which we shall call the resonance 
surface, R(X,  T )  = 0. The cases when the manifold has a lower dimension will not be 
considered here, and are left to the reader. On the resonance surface x is a constant 
which we shall set to zero. The resonance conditions (3 .4~4  b )  then imply that Vx and 
xT vanish on the resonance surface R = 0 (see (2.20b, c ) ) .  It follows that near the 
resonance surface x cc R2 and the phase in the nonlinear term in (2.22) is significant 
only when R is O(ei). Hence we re-scale, and put 

R = &, x = e$. (3.5) 

Here r is a coordinate transverse to the resonance surface. The remaining coordinates 
lie in the resonance surface, scale with X, T, and, to leading order, are passive during 
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the resonant interaction. The balance between nonlinearity and modulation requires 
that 01 = &. Changing variables as indicated, and using (3.5) we find that (2.22) 
becomes, omitting error terms which are relatively O ( E ~ ) ,  

( 3 . 6 ~ )  

(3.6b) where 

The three equations (3.6,) are the required interaction equations, in which we may 
assume that q5 = +Sr2. The coefficients 6, aB/aw,, y and X are evaluated as constants 
as far as the interaction equations ( 3 . 6 ~ )  are concerned. With suitable changes of 
scale for the amplitudes A,, the interaction equations (3.6,) may be put into the 
canonical form 

i3R 
aT 

6, = -+ V,-VR. 

where 

i3A P 2 = A,* A,* exp ( - + i # ~ ~ ) ,  a7 

P, = sign 6,- , ::I 
(3.7a) 

(3.7b) 

The sign of the coefficient 6, determines which side of the resonance surface the r -  
wave is approaching, while the sign of i39/aw, is sign (4,) (see (2.13b), which is also 
the sign of the wave action density d, (see (2.18)). The timescale for the inter- 
action is O(&) on the T-scale, and during this time x is O(e) (see (3.5)),  so that during 
the interaction the right-hand sides of (2.20b, c) are O(s) .  We also note that the 
dissipative term in (2.22) is relatively O(&) during the interaction, and hence does not 
appear in ( 3 . 6 ~ ) .  

Somewhat surprisingly, equation (3.7 a )  appears not to be exactly integrable, even 
though the inhomogeneous detuning term in ( 3 . 7 ~ )  is quadratic in 7 .  The phase- 
dependent transformation which reduces (3.3) to an integrable equation when x(l) is 
a quadratic function of Xand T and v = 0, depends on the fact that the left-hand side 
conserves functions of ( X -  VP'T).  Owing to the local scaling (3.5) no such phase- 
transformation is available for (3.7,). Further, since here V ,  in (2.22) is a function of 
(X, T) ,  and x in (2.22) is not generally a quadratic function of (X, 5") (although it is 
locally near the resonance surface), no such phase-transformation is available for 
(2.22) either. Since ( 3 . 7 ~ )  can apparently not be solved exactly, we must resort to 
numerical procedures and analytical approximations. These have been extensively 
discussed by Grimshaw (1987). Here we shall give only a brief summary of the main 
results. First we note the conservation laws, 

P p  IA,I2 + cp = P* WPl2 +c, = 6r, IA,12> (3.8) 

where C p , q  are constants. These equations itre a consequence of wave action 
conservation in a direction normal to the resonance surface. Indeed the wave action 
flux normal to the resonance surface for the r-wave is proportional to 6, a 9 / a w ,  IA,I2 
in terms of the unscaled variables used in equation (3.6a), or simply P, IA,I2 for the 
scaled variables used in equation ( 3 . 7 ~ ) .  Similarly it may be shown that the wavc 
energy flux normal to  the resonance surface is 4,P,IA,Iz and the pseudo-energy flux 
is wrPrIArl2, in terms of the scaled variables used in equation ( 3 . 7 ~ ) .  For general 
definitions of wave energy and pseudo-energy see Grimshaw (1984). The conservation 
laws (3.8) together with the resonance conditions (3.4a, b)  show that the total wave 
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energy flux and the total pseudo-energy flux for all three waves are conserved during 
the interaction. Note that ( 2 . 1 3 ~ )  together with the resonance conditions (3.4a, b )  
imply that 

It follows that wave action densities d,., which have the same sign as h,. (see (2.18)), 
must have opposite signs during the interaction (i.e. either two have positive values 
and one a negative value, or vice versa). However the wave energy densities are 
d d r ,  and hence are always positive. The pseudo-energy densities are w, dr and may 
in general have any combination of signs. 

There is no loss of generality in supposing that aR/aT > 0 so that  7 (3.5) increases 
as the resonance surface is traversed. Away from the resonance surface each wave 
propagates independently and so the boundary conditions for ( 3 . 7 ~ )  are the 
specification of IA,)' as 7-t- co and the aim is to determine IAJ2 as 7+ + co. The 
nature of the solutions depends on the signs of the coefficients p, (3.7 6 )  (Grimshaw 
1987). First, if all the coefficients /3, (n = p ,  p, r )  have the same sign, there is a 
potentiality for growth in all three waves as the resonance surface is traversed. 
Indeed the solutions obtained by Grimshaw (1987) show that this is generally the 
case, and that if the parameter S is sufficiently small, there may be an explosive 
interaction in which an algebraic singularity develops. In the literature explosive 
interactions have been identified with the presence of both positive-energy waves 
and negative-energy waves (Bloembergen 1965 ; Davidson 1972 ; Weiland & 
Wilhelmsson 1977), where energy refers to the total energy associated with the wave, 
and here can be interpreted as t,he pseudo-energy (see Grimshaw 1984). However, the 
explosive interaction can only be realized if it  is consistent with a well-posed initial 
condition a t  T = 0 say. That is, the initial condition must be free of singularities, 
including any possible singularities near R = 0 due to an explosive interaction. Note 
that the resonance surface R = 0 may intersect the initial surface T = 0. To show 
that explosive interactions cannot be realized in the present circumstances, we 
reconsider (2.22), and recall that (3.7a) is a local approximation to (2.22). It is a 
consequence of (2.22) that  

hp+hq+dr = 0. (3.9) 

(3.10) 

is equal to the same expression with index p or q ,  where dr (2.18) is Z3/i30r & I 2 ,  the 
wave action density. This result implies that  the analogue of (3.8) with respect to the 
time variable T is that in the absence of dissipation (i.e. v = 0 ) ,  

dp dX+ C, = dg dX+ C, = s s (3.11) 

where C,,, are again constants, and the integrals are taken over wave packets, 
assumed to be locally confined. Since the wave action densities must have opposite 
signs (a consequence of (3.9)) it follows that with respect to the time variable the 
interaction is contained. That is, if the amplitudes IA,I2 are bounded initially, then 
i t  is a consequence of (3.1 1) that  they remain bounded. The fact that ( 3 . 7 ~ )  may have 
singular solutions describing an explosive interaction is not relevant here, as the 
above argument demonstrates that sensible initial conditions will lead to boundary 
conditions for ( 3 . 7 ~ )  which exclude the growth of a singularity. This result is in 
marked contrast to the analyses of Cairns (1979) and Craik & Adam (1979) who found 
explosive interactions for interfacial waves for layered fluids when there were 
appropriate velocity shears between the layers. The difference here is that although 
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FIGURE 1 .  A plot of (AJ' as a function of 7 ,  determined from numerical solutions of (3 .7a) .  
(a )  8 = 50,p, = p, = p, = 1 ; ( b )  8 = 5 ,p ,  = 1, = p, = 1 ; (C) f l  = l , p p  = p, =-PI = 1. 
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the waves are propagating in a stratified shear flow, the local dispersion relation 
(2.14) does not depend explicitly on the velocity shear: the basic flow u,,(Z) enters 
only through the Doppler-shifted frequency 4 (see (2 .13~) )  with the consequence that 
the resonance conditions (3 .4a,  b )  imply that (3.9) holds, and the wave action 
densities have opposite signs. However, in the analyses of Cairns (1979) and Craik 
& Adam (1979) the local dispersion relation depends directly on the velocity shear, 
and the analogue of (3.9) does not hold, with the consequence that there is the 
possibility of the wave action densities all having the same sign, and this in turn leads 
to the possibility of an explosive interaction. 

Next, if the coefficients /3, (n = p ,  q, r )  have opposite signs (i.e. either two have 
positive values and one has a negative value, or vice versa), then it is a consequence 
of (3.8) that the interaction is contained and all three waves remain bounded in 
amplitude as the resonance surface is traversed. Some examples of typical 
interactions are shown in figure 1. I n  each case as T increases from - co to co, the 
amplitude IA,I of each wave oscillates with a slowly increasing amplitude before 
rapidly jumping to a new level and then oscillating with a slowly decreasing 
amplitude about this new level. Further details of the behaviour of the amplitudes 
during the interaction are given by Grimshaw (1987). 

4. Wave interactions near a critical level 
The analysis of the previous sections, and particularly 93, case (iii), has identified 

a scenario in which wave triads interact in the vicinity of certain resonance surfaces. 
We can envisage a sequence of such interactions in each of which a pair of waves 
interact to produce a third member of the resonant triad, determined by the 
resonance conditions (3.4a, b) .  During each such interaction wave action is exchanged 
and the amplitudes of each wave before and after the interaction are determined by 
solving equation (3.7 a) .  To illustrate this process we choose the particular example 
of waves approaching a critical level. This choice is motivated by the series of papers 
by Brown & Stewartson (1980, 1982a, b)  on the nonlinear processes affecting internal 
gravity waves near a critical level. They showed that wave reflection and 
transmission was determined by a hierarchy of wave interactions although their 
study differs in a crucial way from that described here in that the higher harmonics 
of the main incoming wave play a major role in the interaction process. Here we 
consider only the interactions of the dominant first harmonics of free waves, and 
further, for simplicity, will consider only the resonance conditions (3.4a, b) .  The 
question as to how much wave action is exchanged during the interaction will not be 
discussed here, and the reader is referred to Grimshaw (1987) for a detailed discussion 
of this aspect. 

To model waves near a critical level, placed a t  2 = 0, we choose the Brunt-VBisala 
frequency N to be constant, and put u, = (Z,O,O). The small parameter e can be 
interpreted as a measure of (Ri)-g where Ri is the Richardson number of the basic 
flow a t  the critical level. We can assume that I C ~ ,  the horizontal component of IC, is 
a constant and parallel to uo, and to simplify the analysis we shall also assume that 
m2 % KL, where m is the vertical wavenumber component. This is an appropriate 
assumption for waves near a critical level. Then the dispersion relation (2.14) has the 
approximate solutions. 
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where K = (k, 0, m )  and we note that k is a constant. The alternate signs refer to  
waves whose vertical group velocity is positive (negative). Equation (4.1) is a partial 
differential equation for the phase 0 where we recall from (2.12) that w = - 0, and 
m = 0,. To solve this equation we put k = nK where n i s  an integer, K > 0. and 
define 

(4.2) r = N .  
Then we put 0 = SN lnT+kX+Nf(r ) ,  (4.3) 

KZT 

where s is also an integer. Hence 

(4.4a, b) 
N 

OJ = - -T ( s+r f77) ) ,  m =KTf ' ( r ) ,  

and substituting these expressions into (4.1) we find that 

rf'"(nr+s)f'TInl = 0. (4.5) 

The particular choice (4.3) is motivated by the work of Brown & Stewartson 
(1982a, b )  who found waves of this form in their study of nonlinear waves near a 
critical level. The introduction of the integers n and s is to allow us to form a large 
family of waves so that, with particular choices of n and s ,  the resonance conditions 
(3.4a, b )  can be satisfied. Although it would be tempting to identify the integer pair 
(n, s) as a wave harmonic we emphasize that here each integer pair corresponds to the 
dominant harmonic of a free wave. For each value of the integer pair (n, s) there are 
two solutions of (4.5) with positive group velocity, and two solutions with negative 
group velocity. 

First we note that when s = sign n, the two solutions of (4.5) with negative group 
velocity are 

The corresponding frequency and vertical wavenumber components are 

f' = -(signn)q-l, -n. (4.6) 

N .  
T 

w = 0, kZ-- signn, (4.7a) 

signn, -kT. (4.76) and 

The first of these solutions corresponds to a steady wave propagating downwards, 
and is just the steady wave analysed by Booker & Bretherton (1967), and found by 
them to undergo critical-layer absorption in the linear theory. I ts  trajectory is found 

N 
z m = -- 

by integrating the equation 
dZ = w = +- Nlkl 
dT m2 ' 

bv integrating the eauation 

where W is the vertical group velocity, and here we choose the lower sign since the 
wave has negative group velocity. Hence its trajectory is 

(4.9) 
KZ 
- = (In1 T+constant)-'. N 

Thus in Z > 0, this represents a wave propagating towards the critical level a t  Z = 
0 as T+ CO, while in Z < 0 it represents a wave which propagates away from the 
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critical level and Z --f - co in a finite time. If i t  is assumed that the wave is generated 
for T > 0 far above the critical level, then its wavefront is given by In1 q = 1 and the 
wave occupies the region In1 q 2 1.  In  the linear theory the wave is absorbed at the 
critical level. The second solution in (4.6) corresponds to critical-layer noise in the 
terminology of Brown & Stewartson (1980, 1982a, b), and represents a transient 
associated with the start-up process for the steady wave. I ts  trajectory is 

KZ 1 
__ = + constant. 
N 

(4.10) 

Thus this represents a wave which propagates down to some finite level of Z as 
T+co. 

Away from resonances (3.4a, b) the amplitudes of these waves can be determined 
by solving the equation for wave action (i.e. (2.22) with the right-hand side replaced 
by zero). For the boundary condition used by Brown & Stewartson (1982~)  a t  the 
level where the waves are generated, we find that the amplitudes are proportional to 
Z-f, and Ti((nlq - l)-l, respectively. The steady wave becomes infinite a t  the critical 
layer, while the critical-layer noise is singular a t  In1 q = 1 .  This latter result is a 
consequence of the asymptotic approximations inherent in a modulated wave 
theory, and the singularity is replaced by a boundary-layer structure in the full wave 
theory (Brown & Stewartson 1 9 8 2 ~ ) .  

It will be shown below that the resonance surfaces are the level surfaces o f y ,  and 
hence we may put R = (q+ constant). It follows that, for each wave, 6 (3.6b) is given 

(4.11a, b) 6 = - ( Z + W T ) ,  or d=,(qflnl(f')'). 

To derive the second of these expressions we have used (4.4b) and (4.8), and the 
alternate signs again refer to a wave with positive (negative) vertical group velocity. 

(4.12) 
Here we find that 

where these expressions refer to the steady wave, or the critical-layer noise 
respectively. It follows that the two waves approach a level surface of q from 
opposite sides if q > 0 and from the same side if q < 0. Also we recall that P (3.7b) 
is equal to sign (46), and hence is given by 

K 1 
N 

by 

1 7 6 = - ( I  -In1 q), -(In1 7-  I) ,  
T In1 T 

P = sign (n(lnl9 - 111, -sign (n(lnlq - I)), (4.13) 

Next we note that when s = -sign n, the two solutions of (4.5) with positive group 

f '  = (signnfrl-l, -n. (4.14) 

for the steady wave, or the critical-layer noise, respectively. 

velocity are 

The corresponding frequency and vertical wavenumber components are 

(4.15 a)  
N 
T 

w = 0, kZ+- signn, 

m = - sign n, (4.15 b) 
N 
z - W .  and 

The first of these solutions corresponds to a steady wave propagating upwards, and 
the second solution again corresponds to critical-layer noise. Their trajectories and 



Resonant wave interactions in a stratiJied shear $ow 369 

other properties are analogous to those described above for the corresponding waves 
with negative group velocity. Thus, for instance, the steady wave in Z < 0 represents 
a wave propagating towards the critical level as T + 00 , while in Z > 0 it  represents 
a wave which propagates away from the critical layer and Z + 00, in a finite time. On 
the other hand, the critical-level noise represents a wave which propagates up to 
some finite level of 2 as T --f 00. 

Now we turn to the general case and seek solutions of (4.5) with positive group 
velocity. These are given by 

(4.16) 

For s(sign n) < - 1,  both branches are defined for all y, except possibly y = 0. For 
s > 0 the first branch is regular a t  y = 0 ( f ’  M In[ s-l), while the second branch is 
singular (f’ z -sy-’); for s < 0, the first branch is singular a t  y = 0 ( f ’  x -ST-’), 

while the second branch is regular ( f ’  x In[ 8-l). As y + a, f ’  - 7-l for the first 
branch, and f ’  - -n- (s+ 1) 7-l for the second branch, when n > 0; when n < 0,  
f ’  - -n- ( s -  1 )  7-l for the first branch, and f ’  - -7-l for the second branch. 
Comparing these expressions with (4.14), we can interpret the branch for which f’ - 
(sign n) 7-l as y + 00 as a steady wave as y + co, while the branch for which f ’  - -n 
is interpreted as critical-layer noise. Similar considerations apply as 7 --f - 00. The 
wave trajectories are found from (4.8), which using (4.2), (4.5) and (4.1 1 b ) ,  can be 
written in the form 

(4.17 a) 
1 3 = 8 = - (y + In1 ( f ’ ) - z ) .  

dT T 

and also (4.17b) 

Integrating we find that the wave trajectories are given by 

T( f ’  + n) = constant. (4.18) 

Depending on the sign of the constant, and signn, it can now be shown that each 
branch corresponds either to a wave which propagates from a finite value of Z as 
T+-co to Z+co in finite time, or to a wave which propagates from Z-t-co a t  
some finite time to a finite value of 2 as T + 00. Both branches are hyperbola in the 
(2, T )-plane, and some typical trajectories are shown in figure 2 (a). 

For s(sign n) 2 0, both branches are defined only for y 3 yl and y < yz, where 

In1 yl, = - (2 + s(sign n)) f ~{s(sign n) + 1);. (4.19) 

The two branches are equal a t  the turning points y1,2 and we can regard the two 
branches as forming a single wave, one defined for y 2 rl and the other for y d yz. 
Note that yz < y l  6 0, and yl = 0 only for s = 0. The behaviour of the branches as 
y --t 0, or (yJ + co is the same as that described in the previous paragraph. The wave 
trajectories are again given by (4.17a) and (4.18). In  particular we note that since 
{(ny +sj2 + 4yJn)); vanishes a t  the turning points yl, 2, S vanishes a t  the turning points 
which mark a transition between branches. Depending on the sign of the constant in 
(4.18), and sign n, it can now be shown that the wave trajectories correspond either 
to a wave which propagates from a finite value of Z as T + - co to a turning point 
(where there is an exchange of branches) and then to Z +  00 in finite time, or to a 
wave which propagates from Z --f - co a t  some finite time to a turning point and then 
to a finite value of Z as T+ 00. Again both branches are hyperbola in the (Z,T)- 
plane, and some typical trajectories are shown in figure 2 ( b ) .  
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FIGURE 2. Typical trajectories for waves whose phases are given by (4.3) and (4.16). 
( a )  n = 2 ,  s = - 2 ; ( b )  n = 2 ,  s = 2 ,  . . . , denote turning points. 

The solutions of (4.5) with negative group velocity are given by 

27f' = - (nT+s)f{(ny+s)2-4Tlnl}t. (4.20) 

This can be analysed in a similar way to that described above for (4.16). We shall not 
give details exccpt to observe that the transformation 7 + - 7,  n -+ n, s + - s  and an 
exchange of branches takes (4.20) into (4.16). 

With these preliminaries we now turn to an examination of the existence of 
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resonant wave triads. Each wave can be described by f (y ; n, s, f ) where the 
subscript f refers to the choice of branch, and the argument f refers to the sign of 
the group velocity. The three members of the wave triad will be denoted by (1 ,2 ,3 )  
rather than ( p ,  q, r ) ,  as used in $3. Then to satisfy the resonance conditions (3.4a, b )  
we find from (4.3) and (4.4~4, b)  that 

n,+n2+n, = 0, s ~ + s , + s ~  = 0, (4.21 a ,  b )  

and ( 4 . 2 1 ~ )  

For a given pair of waves indexed by 1,2 respectively, equations (4.21 a, b )  can be 
regarded as determining n3 and s3 and then (4.21 c) determines one, or more, isolated 
values of y, which thus define the resonance surfaces. Effectively for a given input of 
waves 1,2 equations (4.21 a ,  b ,  c) determine a resonance site, and the third member 
of the wave triad, indexed by 3. From (4.16) and (4.20) it follows that (4.21 c) can be 
written in the form 

3 

(4.22) 

where the first set of ( f ) refers to the branch, and the second set of ( f ) refers to the 
sign of the group velocity. Rejecting the possible solution y = 0, it can be shown that 
(4.22) reduces to a quadratic equation for y,  and when this has real solutions, there 
are two possible resonance sites for each interaction. To be an actual resonance site, 
the allowed values of y must lie in the propagating zone for each wave (i.e. lie outside 
the region between the turning points yl ,  2 ) ,  and also must be consistent with the sign 
of the branches in (4.22). We also note here that, for each wave, it may be shown 
that p = -  sign(WT) sign(af’T), (4.23) 

where /3 is defined by (3.7b), and the relative signs of pl, /3, and p3 determine the 
nature of the interaction a t  each resonance site. For the case when pi ( i  = 1 ,2 ,3 )  all 
have the same sign it follows from (4.17 b )  and (4.22) that W, (i = 1 ,2 ,3 )  must have 
opposite signs. On the other hand, if pi ( i  = 1,2,3)  have opposite signs it is possible 
to have an interaction in which Wi (i = 1,2,3) all have the same sign. 

I n  general there are many possible solutions of (4.21 a, 6, c ) .  For simplicity we shall 
consider only the case of most interest when waves 1,2 correspond to the special cases 
of a steady wave and critical layer noise, using the terminology of Brown & 
Stewartson (1980, 1982a, b).  We shall also suppose that both these waves have 
negative group velocities. Thus, from (4.6) we put 

f’(y;nl,sl,  - )  = -(signn,)y-l,s, = signn,, ( 4 . 2 4 ~ )  

and f ’ ( y  ; 122,&2, - 1 = - n,, s2 = signn,. (4.24 b )  

Note that for these special cases the issue of the choice of branch is not relevant. With 
n3,s3 now determined from (4.21a, b ) ,  we use ( 4 . 2 1 ~ )  to solve for the possible 
resonance sites y, and also to determine wave 3. First, let us suppose that n, nz > 0, 
and hence s3 = - 2 sign n,. Then wave 3 is described by f - (7 ; n3, s3, f ), and the 
resonance site is determined by ( 4 . 2 1 ~ ) .  We find that 

n , n 2 y 2 + 2 ) n , + n , J ~ + 1  = 0 for W3 > 0, (4.25a) 

or n,n,y2+1 = 0 for W3 < 0, (4.25 b )  
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where W, is the vertical group velocity for wave 3. The solutions of (4.25a) are 
7 = --/nJ1, and 7 = -In,l-', and for n, 2 n2, we must choose the f branch of 
wave 3. The smaller of these two resonances in absolute value lies between the 
turning points q l , ~ ,  of wave 3 and hence must be disregarded. The other will lic in 
the region 7 < qz, which is a propagating zone for wave 3, provided that max (lnll, 
In,l) > (3 + 21//3) min (In,l, In,/). However, since the non-propagating zone for wave 3 
is T~ < 7 < y1, and yZ < v1 d 0, it follows that this resonance can only be realized if 
wave 1 is also defined in 7 < 0, rather than in 7 > 0. If wave 1 is defined in 7 < 0, then 
it represents a wave which is propagating away from the critical level a t  2 = 0. 
Hence this resonance is not of great practical interest. There are no real solutions of 
(4.25b). Thus, in summary, there are no realizable resonances of practical interest in 
this first case. 

Second, we suppose that n, n2 < 0 and hence s3 = 0. The resonances are now given 
by n, n2 y2 + 2 max (Inl!, In2/) 7 - 1 = 0 ( 4 . 2 6 ~ ~ )  

n1n,72+2min(Inll,In21)7-1 = 0  for W, < 0 .  (4.26 6 )  

€or W, > 0, 

(4.27) 

where the upper (lower) resonance corresponds to the f branch of wave 3 if n, > 0, and 
vice versa if < 0. Since the turning points for wave 3 are v1 = 0 and qZ = -4Ir~,l-~, 
both of the resonances, being positive, lie in a propagating zone for wave 3. Thus 
both resonances can be realized in 7 > 0, and describe the interaction of a steady 
wave, and critical-layer noise, both propagating down to the critical level at Z = 0, 
to produce a third wave with positive group velocity. Depending on the choice of 
branch, that is, on the resonance which produces the wave, this third wave behaves as 
a steady wave, or as critical-layer noise, as 7 + GO. Now it can be shown that for the 
smaller resonance 7 < min (lnl1-l, lnz/-l) and for the larger resonance 7 > max (]nl1-l, 
lnz1-'). It then follows from (4.12) that  a t  the smallcr resonance 8, > 0 and 6, < 0, 
and a t  the larger resonance S, < 0 and 6, > 0 ;  in both cases the waves approach 
the resonance site from opposite sides. Also it follows from (4.17 b )  that  &,(sign n,) > 0 
a t  both resonances. Further we note from (4.13) that p1p2 < 0 so that the 
interaction of the three waves is always contained. Throughout this discussion the 
special case Inl[ = In,l is excluded, as then n3 = 0. Finally there are no real solutions 
of (4.263). 

5. Discussion 
In this paper we have identified two kinds of resonant wave interactions. The first 

case, which we called (i) (strong resonance) in $3,  occurs when the resonance 
conditions can be met globally. This is the case which is usually discussed in the 
literature. The second case, which we called (ii) (weak resonance) in 93, occurs when 
the resonance conditions can only be met locally, on certain resonance surfaces. Our 
main interest is in this second case, and while there are likely to be many scenarios 
where case (ii) could arise we have focused our attention on the situation when 
internal gravity waves interact near a critical level. Even then, with the family of 
waves restricted to those whose phases have the form (4.3), we find that there are 
many possible resonances. We may conclude that a critical layer is the site for 
vigorous wave-wave interactions. 
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The one scenario that we have explored in detail corresponds to the case when a 
steady wave and critical-layer noise propagating towards the critical level, interact 
there to produce a third wave which propagates back from the critical level and far 
away resembles either a steady wave or critical-layer noise. Thus the resonant 
interaction process can be said to have produced a reflected wave. Brown & 
Stewartson (1980, 1982a, b) have shown that wave forcing far from the critical level 
produces a steady wave propagating towards the critical level, and various 
transients. Near the critical level the dominant component in the transient wave field 
is critical-layer noise, being that component whose group velocity approaches zero 
near the critical level. They then showed that the driven second harmonic of the 
steady wave interacts with the critical-layer noise to produce a reflected wave, which 
resembles a steady wave far from the critical level. The mechanism described in this 
paper is similar, but has the crucial difference that only the first harmonics of each 
wave field are involved in the interaction. 

Of course the mechanism described here is potentially the stronger, but it requires 
that the steady wave and the critical-layer noise correspond to different harmonics 
(i.e. In1( =I= In,[), whereas the Brown & Stewartson (1980, 1982a, b) mechanism allows 
the steady wave and the critical-layer noise to have the same harmonic behaviour 
(i.e. )nll = InJ) and hence can be driven by the same single harmonic source. To model 
the scenario described by Brown & Stewartson (1980, 1982a, b)  within the present 
framework we choose n, = 2 for the steady wave, and n2 = - 1 for the critical-layer 
noise, in (4.24a, b) .  Thus the horizontal wavenumber component of the steady wave 
is exactly twice that for the critical-layer noise. However, note that s, = 1 and 
s2 = - 1. We then find that n3 = - 1 and s3 = 0, and the phase is given by (4.3) 
where 

The resonance sites (4.27) are 7 = g(2f d 2 ) .  The reflected wave 3 generated a t  the 
upper resonance corresponds to the second ( - )  branch in (5.1) which behaves as a 
steady wave far from the critical level, while that generated a t  the lower resonance 
site corresponds to the first ( + ) branch in (5.1) which behaves as critical-layer noise. 
Significantly, since the upper resonance lies in 7 > 1 ) and the incoming steady wave 
is only defined in 7 > 1 with a wavefront a t  7 = 1, only the resonant interaction 
producing the reflected steady wave can be realized. 

In contrast the Brown & Stewartson mechanism considers the interaction of a 
second harmonic of an incoming steady wave (n, = 1 and s, = 1 in ( 4 . 2 2 ~ ) )  with 
incoming critical layer noise (n, = - 1 and s2 = - 1 in (4.223)). Thus the resonance 
conditions (3.4a, b) are altered to 

2w,+w,+w3 = 0, 2K1+K2+K3 = 0. (5.2a, b) 

We now find that for the reflected outgoing wave n3 = - 1 and s3 = - 1 ,  and the phase 
is given by (4.3) where 

27fi = 7+1+{72+67+l>a.  (5.3) 

The resonance sites are 7 = i (3  f 2/5) .  The upper resonance site corresponds to the 
second ( - )  branch in (5.3), which behaves as a steady wave as 7 -j 00, while the lower 
resonance site corresponds to the first ( + )  branch in (5.3), which behaves as critical 
layer noise as 7 --f 00. Again the upper resonance site lies in 7 > 1, and since the 
incoming steady wave is only defined in 7 > 1, only the resonant interaction 
producing the steady wave can be realized. These results agree with those of Brown 
& Stewartson (1980, 1982a, b) who also calculated the amplitude of the reflected 
wave. Apart from deriving the equations (3.7a, 6) for the determination of the 
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amplitudes during the interaction, we have not discussed the amplitudes in this 
paper. The details of this calculation are complex and are the subject of current 
work. 
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